Suitability of bilateral filtering for edge-preserving noise reduction in PET

نویسندگان

  • Frank Hofheinz
  • Jens Langner
  • Bettina Beuthien-Baumann
  • Liane Oehme
  • Jörg Steinbach
  • Jörg Kotzerke
  • Jörg van den Hoff
چکیده

BACKGROUND To achieve an acceptable signal-to-noise ratio (SNR) in PET images, smoothing filters (SF) are usually employed during or after image reconstruction preventing utilisation of the full intrinsic resolution of the respective scanner. Quite generally Gaussian-shaped moving average filters (MAF) are used for this purpose. A potential alternative to MAF is the group of so-called bilateral filters (BF) which provide a combination of noise reduction and edge preservation thus minimising resolution deterioration of the images. We have investigated the performance of this filter type with respect to improvement of SNR, influence on spatial resolution and for derivation of SUVmax values in target structures of varying size. METHODS Data of ten patients with head and neck cancer were evaluated. The patients had been investigated by routine whole body scans (ECAT EXACT HR+, Siemens, Erlangen). Tomographic images were reconstructed (OSEM 6i/16s) using a Gaussian filter (full width half maximum (FWHM): Γ0 = 4 mm). Image data were then post-processed with a Gaussian MAF (FWHM: ΓM = 7 mm) and a Gaussian BF (spatial domain: ΓS = 9 mm, intensity domain: ΓI = 2.5 SUV), respectively. Images were assessed regarding SNR as well as spatial resolution. Thirty-four lesions (volumes of about 1-100 mL) were analysed with respect to their SUVmax values in the original as well as in the MAF and BF filtered images. RESULTS With the chosen filter parameters both filters improved SNR approximately by a factor of two in comparison to the original data. Spatial resolution was significantly better in the BF-filtered images in comparison to MAF (MAF: 9.5 mm, BF: 6.8 mm). In MAF-filtered data, the SUVmax was lower by 24.1 ± 9.9% compared to the original data and showed a strong size dependency. In the BF-filtered data, the SUVmax was lower by 4.6 ± 3.7% and no size effects were observed. CONCLUSION Bilateral filtering allows to increase the SNR of PET image data while preserving spatial resolution and preventing smoothing-induced underestimation of SUVmax values in small lesions. Bilateral filtering seems a promising and superior alternative to standard smoothing filters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge-Preserving Denoising for Segmentation in CT-images

In the clinical environment the segmentation of organs is an increasingly important application and used, for example, to restrict the perfusion analysis to a certain organ. In order to automate the time-consuming segmentation process denoising techniques are required, which can simultaneously remove the locally varying and oriented noise in computed tomography (CT) images and preserve edges of...

متن کامل

Improved Edge Awareness in Discontinuity Preserving Smoothing

Discontinuity preserving smoothing is a fundamentally important procedure that is useful in a wide variety of image processing contexts. It is directly useful for noise reduction, and frequently used as an intermediate step in higher level algorithms. For example, it can be particularly useful in edge detection and segmentation. Three well known algorithms for discontinuity preserving smoothing...

متن کامل

Assessment of the Wavelet Transform for Noise Reduction in Simulated PET Images

Introduction: An efficient method of tomographic imaging in nuclear medicine is positron emission tomography (PET). Compared to SPECT, PET has the advantages of higher levels of sensitivity, spatial resolution and more accurate quantification. However, high noise levels in the image limit its diagnostic utility. Noise removal in nuclear medicine is traditionally based on Fourier decomposition o...

متن کامل

Trilateral Filtering: A Non-linear Noise Reduction Technique for MRI

INTRODUCTION Filtering is a preliminary process in many medical image processing applications, which is aimed at restoring a noise-corrupted image to its noiseless counterpart. Post-processing tasks, e.g., visualization, segmentation and quantification, may benefit from the reduction of noise. Diffusion equations with scalar-valued and tensor-valued diffusivities [1] and non-linear filters [2] ...

متن کامل

Filtering Video Volumes Using the Graphics Hardware

Denoising video is an important task, especially for videos captured in dim lighting environments. The filtering of video in a volumetric manner with time as the third dimension can improve the results significantly. In this work a 3D bilateral filter for edge preserving smoothing of video sequences exploiting commodity graphics hardware is presented. A hardware friendly streaming concept has b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2011